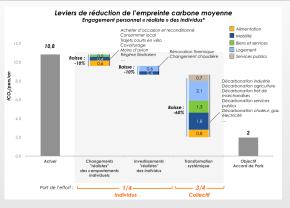

Prendre des décisions en commun Une courte introduction au choix social

Sylvain Bouveret LIG – Univ. Grenoble-Alpes

Séminaire transdisciplinaire Grenoble, 20 octobre 2021

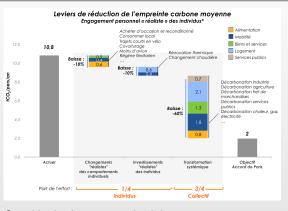
Des plans pour le futur?



Source :

Carbone 4 - Faire sa part ? pouvoir et responsabilité des individus, des entreprises et de l'état face à l'urgence climatique)

Des plans pour le futur?


Source .

Carbone 4 - Faire sa part ? pouvoir et responsabilité des individus, des entreprises et de l'état face à l'urgence climatique)

Qui décide des actions à réaliser en commun et comment?

Des plans pour le futur?

Source .

Carbone 4 - Faire sa part ? pouvoir et responsabilité des individus, des entreprises et de l'état face à l'urgence climatique)

Qui décide des actions à réaliser en commun et comment ?

La **décision collective** est au cœur de la société et aucune transition ne se fera sans une réflexion sur ces mécanismes de décision en commun.

Il existe une discipline scientifique dédiée à l'étude des problèmes de décision collective : la théorie du choix social

Il existe une discipline scientifique dédiée à l'étude des problèmes de décision collective : la théorie du choix social

• Un ensemble d'options \mathcal{O}

Il existe une discipline scientifique dédiée à l'étude des problèmes de décision collective : la théorie du choix social

- Un ensemble d'options $\mathcal O$
- Un ensemble d'agents $A = \{a_1, \ldots, a_n\}$...

Il existe une discipline scientifique dédiée à l'étude des problèmes de décision collective : la théorie du choix social

- Un ensemble d'options $\mathcal O$
- Un ensemble d'agents $A = \{a_1, \ldots, a_n\}$...
- ...Exprimant des opinions sur les options.

Il existe une discipline scientifique dédiée à l'étude des problèmes de décision collective : la théorie du choix social

- Un ensemble d'options \mathcal{O}
- Un ensemble d'agents $A = \{a_1, \ldots, a_n\}$...
- ...Exprimant des opinions sur les options.

Opinion collective, choix d'une option...

Il existe une discipline scientifique dédiée à l'étude des problèmes de décision collective : la théorie du choix social

- Un ensemble d'options \mathcal{O}
- Un ensemble d'agents $A = \{a_1, \ldots, a_n\}$...
- ...Exprimant des opinions sur les options.

Opinion collective, choix d'une option...

Quiz : Quelles situations réelles de décision collective connaissez-vous ? Quels en sont les enjeux et la portée (locale, globale) ?

Problème n°1 : le vote

Problème n°1 : le vote

Source : © Capture d'écran de la chaîne YouTube de McFly et Carlito

Problème n°1 : le vote

Nous devons élire un représentant parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

Problème n°1 : le vote

Nous devons élire un représentant parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

Options : candidats (m)

Agents : électeurs (n)

• Préférences : bulletins de vote

Problème n°1 : le vote

Nous devons élire un représentant parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

Options : candidats (m)

Agents : électeurs (n)

• Préférences : bulletins de vote

Nous reviendrons sur ce problème en détails plus tard.

Problème n°2 : le vote de comité

Problème n°2 : le vote de comité

Problème n°2 : le vote de comité

Nous devons élire un **ensemble** de représentants parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

Problème n°2 : le vote de comité

Nous devons élire un **ensemble** de représentants parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

- Options : sous-ensembles de candidats (m)
- Agents : électeurs (n)
- · Préférences : bulletins de vote

Malgré sa similarité avec le problème de vote simple, il a des caractéristiques singulières.

Applications : élections parlementaires, conseil de laboratoire, recrutement, budget participatif...

On en reparlera (peut-être) plus tard...

Partage équitable continu

Problème n°3 : le partage continu

Formellement : problème de partage de gâteau (cake-cutting)

Partage équitable continu – gâteaux

Problème n°3 : le partage continu

Il faut partager un gâteau rectangulaire hétérogène (un cake) entre n agents ayant des évaluations différentes sur les différentes parties du gâteau.

Partage équitable continu – gâteaux

Problème n°3 : le partage continu

Il faut partager un gâteau rectangulaire hétérogène (un cake) entre n agents ayant des évaluations différentes sur les différentes parties du gâteau.

)		

Partage équitable continu – gâteaux

Problème n°3 : le partage continu

Il faut partager un gâteau rectangulaire hétérogène (un cake) entre n agents ayant des évaluations différentes sur les différentes parties du gâteau.

)		

- Options : différents partages du gâteau (∞)
- Agents: les convives (n)
- Préférences : fonctions d'évaluation (continues, en général additives)

Des protocoles de partage

En général, on s'intéresse à :

- La proportionalité : chaque agent pense que sa part vaut au moins $\frac{1}{n}$ du gâteau total.
- L'absence d'envie : chaque agent pense que sa part est meilleure que n'importe quelle part reçue par les autres convives.

Des protocoles de partage

En général, on s'intéresse à :

- La proportionalité : chaque agent pense que sa part vaut au moins $\frac{1}{n}$ du gâteau total.
- L'absence d'envie : chaque agent pense que sa part est meilleure que n'importe quelle part reçue par les autres convives.

Quiz : Vous êtes deux convives, et vous avez un couteau (pour le gâteau, pas pour vous étriper...). Pouvez-vous proposer un protocole simple de partage du gâteau garantissant ces deux propriétés?

Des protocoles de partage

En général, on s'intéresse à :

- La proportionalité : chaque agent pense que sa part vaut au moins $\frac{1}{n}$ du gâteau total.
- L'absence d'envie : chaque agent pense que sa part est meilleure que n'importe quelle part reçue par les autres convives.

Quiz : Vous êtes deux convives, et vous avez un couteau (pour le gâteau, pas pour vous étriper...). Pouvez-vous proposer un protocole simple de partage du gâteau garantissant ces deux propriétés?

2 agents : Je coupe, tu choisis.

- Agent 1 coupe le gâteau en deux parts qu'il estime égales.
- Agent 2 choisit laquelle des deux parts il prend.

Quiz : Et si vous êtes plus que deux?

Quiz : Et si vous êtes plus que deux?

Absence d'envie : pas simple...

Quiz : Et si vous êtes plus que deux?

Absence d'envie : pas simple...

Proportionalité : procédure Last Diminisher (Banach-Knaster) :

1 L'agent 1 coupe une part qu'il estime valoir $\frac{1}{n}$

Quiz : Et si vous êtes plus que deux?

Absence d'envie : pas simple...

Proportionalité : procédure Last Diminisher (Banach-Knaster) :

- 1 L'agent 1 coupe une part qu'il estime valoir $\frac{1}{n}$
- 2 Chaque agent de 2 à *n* peut soit passer, soit raccourcir la part déjà coupée.

Quiz : Et si vous êtes plus que deux?

Absence d'envie : pas simple...

Proportionalité : procédure Last Diminisher (Banach-Knaster) :

- 1 L'agent 1 coupe une part qu'il estime valoir $\frac{1}{n}$
- 2 Chaque agent de 2 à *n* peut soit passer, soit raccourcir la part déjà coupée.
- 3 Le dernier agent ayant (re)coupé la part la récupère dans son assiette et quitte le jeu.

Quiz : Et si vous êtes plus que deux?

Absence d'envie : pas simple...

Proportionalité : procédure Last Diminisher (Banach-Knaster) :

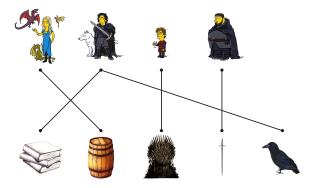
- 1 L'agent 1 coupe une part qu'il estime valoir $\frac{1}{n}$
- 2 Chaque agent de 2 à *n* peut soit passer, soit raccourcir la part déjà coupée.
- 3 Le dernier agent ayant (re)coupé la part la récupère dans son assiette et quitte le jeu.
- 4 Le jeu recommence avec les agents restants et le reste du gâteau.

Problème n°4 : le partage discret

Problème n°4 : le partage discret

Problème n°4 : le partage discret

Problème n°4 : le partage discret



Problème n°4 : le partage discret

Il faut répartir un ensemble de m objets indivisibles entre n agents ayant des évaluations différentes de ces objets.

Problème n°4 : le partage discret

Il faut répartir un ensemble de m objets indivisibles entre n agents ayant des évaluations différentes de ces objets.

Problème n°4 : le partage discret

Il faut répartir un ensemble de m objets indivisibles entre n agents ayant des évaluations différentes de ces objets.

Problème n°4 : le partage discret

Il faut répartir un ensemble de m objets indivisibles entre n agents ayant des évaluations différentes de ces objets.

- Options: partages possibles (n^m)
- Agents: consommateurs d'objets (n)
- Préférences : fonction d'évaluation / ordres...

Applications : Affectation de sujets de TP à des étudiants, répartition de tâches entre robots, systèmes de *crowdsourcing*, répartition de tâches à des machines...

Nous reviendrons (peut-être) sur ce problème en détails plus tard.

Affectation (matching)

Problème n°5: l'affectation

Nous devons associer des agents d'un groupe S_1 à des agents d'un groupe S_2 . Les agents de S_1 ont des préférences sur les agents de S_2 , et vice-versa.

Affectation (matching)

Problème n°5: l'affectation

Nous devons associer des agents d'un groupe S_1 à des agents d'un groupe S_2 . Les agents de S_1 ont des préférences sur les agents de S_2 , et vice-versa.

Exemples:

- Affectation d'étudiants à des écoles¹ (one-to-many matching)
- Affectation d'étudiants à des projets (many-to-many matching)
- Appariement d'hommes et de femmes mariage stable² (one-to-one matching)

¹ Tiens, ça vous rappelle quelque chose? (#ParcoursSup)

 $^{^2}$ Métaphore inventée à une époque où le mariage entre personnes de même sexe n'était pas légal...

Le problème du mariage stable

- *n* femmes et *n* hommes
- Chaque femme a un ordre de préférence sur les hommes, et vice-versa.
- Nous recherchons un appariement stable (sans couple bloquant)

Le problème du mariage stable

- n femmes et n hommes
- Chaque femme a un ordre de préférence sur les hommes, et vice-versa.
- Nous recherchons un appariement stable (sans couple bloquant)

Stable?

- Ashley est mariée à Brandon Ashley \leftrightarrow Brandon
- Cliff est marié à Daisy Cliff ↔ Daisy
- Ashley préfère Cliff à Brandon Ashley : Cliff ≻ Brandon
- Cliff préfère Ashley à Daisy Cliff : Ashley ≻ Daisy

Le problème du mariage stable

- n femmes et n hommes
- Chaque femme a un ordre de préférence sur les hommes, et vice-versa.
- Nous recherchons un appariement stable (sans couple bloquant)

Stable?

- Ashley est mariée à Brandon Ashley \leftrightarrow Brandon
- Cliff est marié à Daisy Cliff ↔ Daisy
- Ashley préfère Cliff à Brandon Ashley : Cliff ≻ Brandon
- Cliff préfère Ashley à Daisy − Cliff : Ashley > Daisy

Ashley $\not\leftrightarrow$ Brandon + Cliff $\not\leftrightarrow$ Daisy \Rightarrow Ashley \leftrightarrow Cliff

...Mauvais matching (mais bon scénario de sitcom)

L'algorithme de Gale-Shapley (1962)

On peut trouver un mariage stable « facilement » :

- Chaque homme non fiancé fait une proposition a sa favorite parmi les femmes auxquelles il n'a encore fait aucune proposition.
- Chaque femme choisit son favori parmi toutes les propositions qu'elle reçoit (si elle est déjà fiancée et que la meilleure proposition reçue surpasse son fiancé actuel, elle rompt son engagement).
- On boucle jusqu'à ce que tout le monde soit fiancé.

Formation de coalition

Problème n°6 : la formation de coalitions

n agents doivent constituer des groupes. Chaque agent a des préférences sur les autres agents.

Formation de coalition

Problème n°6 : la formation de coalitions

n agents doivent constituer des groupes. Chaque agent a des préférences sur les autres agents.

- Options : partitions valides des participants.
- Agents: participants (n).
- Préférences : en général des préférences numériques (additives) sur les autres participants.

Formation de coalition

Problème n°6 : la formation de coalitions

n agents doivent constituer des groupes. Chaque agent a des préférences sur les autres agents.

- Options : partitions valides des participants.
- Agents: participants (n).
- Préférences : en général des préférences numériques (additives) sur les autres participants.

Généralisation du problème d'affectation. En général, on s'intéresse aux coalitions stables (jeux hédoniques), ou aux coalitions collectivement optimales.

Agrégation de jugement

Problème n°7 : l'agrégation de jugement

Nous disposons de m énoncés qui peuvent être vrais ou faux. Ces énoncés sont logiquement interdépendants. n juges ont une opinion cohérente sur ces énoncés. Nous devons décider selon l'opinion des juges lesquels de ces énoncés sont vrais.

Agrégation de jugement

Problème n°7 : l'agrégation de jugement

Nous disposons de m énoncés qui peuvent être vrais ou faux. Ces énoncés sont logiquement interdépendants. n juges ont une opinion cohérente sur ces énoncés. Nous devons décider selon l'opinion des juges lesquels de ces énoncés sont vrais.

- Options : énoncés logiquement interdépendants (m)
- Agents: juges (n)
- Préférences : en général binaires (oui / non)

- Vous avez soumis un papier à l'International Conference on Whatever (ICW)
- Instructions du PC chair de l'ICW: un papier doit être accepté si et seulement s'il a le niveau technique suffisant et s'il est original.

- Vous avez soumis un papier à l'International Conference on Whatever (ICW)
- Instructions du PC chair de l'ICW : un papier doit être accepté si et seulement s'il a le niveau technique suffisant et s'il est original.
- Accepter ↔ Niveau ∧ Original

	Niveau?	Original?	Accepter?
Reviewer 1	Oui	Oui	Oui
Reviewer 2	Oui	Non	Non
Reviewer 3	Non	Oui	Non
Majorité			

- Vous avez soumis un papier à l'International Conference on Whatever (ICW)
- Instructions du PC chair de l'ICW : un papier doit être accepté si et seulement s'il a le niveau technique suffisant et s'il est original.
- Accepter \leftrightarrow Niveau \land Original

	Niveau?	Original?	Accepter?
Reviewer 1	Oui	Oui	Oui
Reviewer 2	Oui	Non	Non
Reviewer 3	Non	Oui	Non
Majorité	Oui		

- Vous avez soumis un papier à l'International Conference on Whatever (ICW)
- Instructions du PC chair de l'ICW : un papier doit être accepté si et seulement s'il a le niveau technique suffisant et s'il est original.
- Accepter ↔ Niveau ∧ Original

	Niveau?	Original?	Accepter?
Reviewer 1	Oui	Oui	Oui
Reviewer 2	Oui	Non	Non
Reviewer 3	Non	Oui	Non
Majorité	Oui	Oui	

- Vous avez soumis un papier à l'International Conference on Whatever (ICW)
- Instructions du PC chair de l'ICW : un papier doit être accepté si et seulement s'il a le niveau technique suffisant et s'il est original.
- Accepter \leftrightarrow Niveau \land Original

	Niveau?	Original?	Accepter?
Reviewer 1	Oui	Oui	Oui
Reviewer 2	Oui	Non	Non
Reviewer 3	Non	Oui	Non
Majorité	Oui	Oui	Non

- Vous avez soumis un papier à l'International Conference on Whatever (ICW)
- Instructions du PC chair de l'ICW : un papier doit être accepté si et seulement s'il a le niveau technique suffisant et s'il est original.
- Accepter \leftrightarrow Niveau \land Original

	Niveau?	Original?	Accepter?
Reviewer 1	Oui	Oui	Oui
Reviewer 2	Oui	Non	Non
Reviewer 3	Non	Oui	Non
Majorité	Oui	Oui	Non

 (Retour des relecteurs sur votre papier). Votre papier est original et a le niveau technique suffisant. Mais nous avons décidé de le rejeter...

Agrégation de jugement

- Agrégation de jugement : agréger des opinions sur des énoncés logiquement dépendants... mais d'une manière cohérente
- Liens forts avec le raisonnement non monotone, la fusion de croyances, la prise en compte d'inconsistences.

Du choix social partout...

- · Affectation de cours à des étudiants
- Élire un représentant politique (par exemple le président de la république)
- Choisir une date commune pour une réunion
- Choisir le futur nom d'une région
- Élire le vainqueur de l'Eurovision
- Planifier la charge de travail d'une équipe de travailleurs
- Affecter des patients à des hôpitaux
- Diviser un territoire
- Former des équipes
- Choisir un emplacement pour une infrastructure commune
- •

Remarque finale

Le problème de choix social :

- Un ensemble d'options \mathcal{O}
- Un ensemble d'agents $A = \{a_1, \ldots, a_n\}$...
- ...Exprimant des opinions sur les options.

Opinion collective, choix d'une option...

Remarque finale

Le problème de choix social :

- Un ensemble d'options \mathcal{O}
- Un ensemble d'agents $A = \{a_1, \ldots, a_n\}$...
- ...Exprimant des opinions sur les options.

Opinion collective, choix d'une option...

Ça ne vous rappelle rien?

L'agrégation multicritères

Un problème cousin – l'agrégation multicritères :

- Un ensemble d'options $\mathcal O$
- Un ensemble de **critères** $\mathcal{C} = \{c_1, \dots, c_n\}$...
- · ...Permettant d'évaluer les options.

Évaluation multicritères, choix d'une option...

Formellement le même problème, mais dans des contextes différents (et avec des solutions différentes)

Le problème de vote

Qui est le meilleur candidat?

Le vote

Problème n°1 : le vote

Nous devons élire un représentant parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

OK... Mais comment fait-on en pratique?

Quiz : Comment feriez-vous concrètement ?

Le vote

Problème n°1 : le vote

Nous devons élire un représentant parmi un ensemble de m candidats sur lesquels n électeurs ont diverses préférences.

OK... Mais comment fait-on en pratique?

Quiz : Comment feriez-vous concrètement ?

Demandons à Albert...

https://www.youtube.com/watch?v=vfTJ4vmIsO4

Les procédures de vote

Quiz : Que retenez-vous de cette vidéo?

Les procédures de vote

Quiz : Que retenez-vous de cette vidéo?

Revoyons les différentes procédures de vote :

https://whale.imag.fr/polls/viewPoll/f129915d-5ad3-4e83-9261-a6668efa8c84

Quelle procédure?

Alors, comment choisir une procédure de vote qui tient la route?

On peut s'appuyer sur des propriétés désirables : anonymat, unanimité, neutralité...

Mais...

Théorème d'Arrow (1951) :

Dès qu'il y a au moins 3 options, toute fonction d'agrégation satisfaisant l'unanimité et l'indépendance aux alternatives non pertinentes est forcément dictatoriale.

(NB : le choix social est pavé de théorèmes d'impossibilité de ce genre...)

Quelle procédure?

- On ne peut pas tout avoir → il faut se focaliser sur les propriétés désirables que l'on souhaite : monotonie, unanimité, renforcement, résistance à la manipulation, indépendance aux clones...
- Expression des bulletins : uninominal ? approbation ? ordre ? note ?
- Compréhensibilité de la procédure (bulletins + calcul du vainqueur)

Source : FabCaro (2019) Open Bar 1ère Tournée. Delcourt

Pause

Que voulez-vous voir ensuite?

- Changeons l'élection présidentielle! Un retour sur une expérimentation menée lors de la présidentielle 2017.
- Quelques réflexions sur le vote électronique.
- Réformons l'élection législative! Que se passerait-il si l'on introduisait de la proportionelle?
- 4 Le scrutin majoritaire à deux tours est-il un bon système de vote? La réponse pourrait vous surprendre...

Votez!

Vous allez recevoir un lien par mail – Nous utiliserons le vote alternatif